2021 考研数学三模拟卷

学校: 姓名: 准考证号: 时间:180 分钟 满分:150 分 命题人:向禹 一、选择题:1-10 题,每题 5 分,共 50 分。在每题给出的四个选项中,只有一项是符合题目要 求的。 1. 设函数 f(x) 在 $(-\infty, +\infty)$ 上单调递增,则下列说法中错误的是 () A. 如果函数极限 $\lim_{n\to\infty} f(x) = A$,则数列极限 $\lim_{n\to\infty} f(n) = A$ B. 如果数列极限 $\lim_{n\to\infty} f(n) = A$,则函数极限 $\lim_{x\to +\infty} f(x) = A$ C. 如果数列 $x_n \to x_0$ 且 $x_n \neq x_0$,则极限 $\lim_{n \to \infty} f(x_n)$ 存在 D. 函数 f(x) 的间断点必然是跳跃间断点 2. 设 $0 < a \le b \le c$,则反常积分 $\int_{0}^{+\infty} \frac{\mathrm{d}x}{x^a + x^b + x^c}$ 收敛的充要条件是 B. $a \le 1 \le c$ C. a < 1 < b D. b < 1 < cA. a < 1 < c3. 设 $\varphi(x,y)$ 在 (0,0) 的邻域内连续且 $\varphi(0,0) = 0$, 则函数 $f(x,y) = (|x| + |y|)\varphi(x,y)$ 在 (0,0)处 A. 可微 B. 连续但偏导数不存在 C. 偏导数连续 D. 偏导数存在但不可微 4. 差分方程 $v_{t+1} + 2v_t = (t^2 + 1) \cdot 2^t + (-2)^t$ 的特解形式为) A. $(at^2 + bt + c) \cdot 2^t + d \cdot (-2)^t$ B. $(at^2 + bt + c) \cdot 2^t + dt \cdot (-2)^t$ C. $t(at^2 + bt + c) \cdot 2^t + d \cdot (-2)^t$ D. $t(at^2 + bt + c) \cdot 2^t + dt \cdot (-2)^t$ 5. 设函数 f(x,y) 连续,则累次积分 $\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^2}} f(x,y) dy$ 等于) A. $\int_{1}^{1} dy \int_{0}^{y+1} f(x,y) dx + \int_{0}^{\frac{1}{2}} dy \int_{0}^{\frac{1}{2} - \sqrt{\frac{1}{4} - y^2}} dx$ B. $\int_{1}^{1} dy \int_{0}^{y+1} f(x,y) dx + \int_{0}^{\frac{1}{2}} dy \int_{0}^{\frac{1}{2} + \sqrt{\frac{1}{4} - y^2}} dx$ C. $\int_{-\pi}^{0} d\theta \int_{0}^{\frac{1}{\cos\theta - \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ D. $\int_{-\frac{\pi}{2}}^{0} d\theta \int_{0}^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\sin\theta} f(r\cos\theta, r\sin\theta) r dr$ 6. 设常数 a > 0,则级数 $\sum_{n=0}^{\infty} \sin\left(\sqrt{n^2 + an\pi}\pi\right)$ 的敛散性为

)

A. 绝对收敛

B. 条件收敛

C. 发散

- D. 敛散性与 a 的取值有关
- 7. 设有向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s; \beta_1, \beta_2, \cdots, \beta_t; \gamma$,如果

$$r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s) < r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t), r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t, \boldsymbol{\gamma}),$$

则下列说法中错误的是)

- A. 向量 γ 不能被 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示,但能被 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示
- B. $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t)$
- C. 如果向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 线性无关
- D. 如果向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 能被向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示,则向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 能被 $\alpha_1, \alpha_2, \cdots, \alpha_s, \gamma$ 线性表示
- 8. 设 $A \in m \times n$ 矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, 则下列说法中错误的是 ()
 - A. 如果对任意 m 维列向量 b, 方程组 Ax = b 有解,则 $m \ge n$
 - B. 如果 r(A) = m,则对任意 m 维列向量 b,方程组 Ax = b 有解
 - C. 对任意 m 维列向量 b, 方程组 $A^{T}Ax = A^{T}b$ 有解
 - D. 如果 r(A) = n,则对任意 n 维列向量 b,方程组 $A^{T}Ax = b$ 有解
- 9. 设随机变量 X 与 Y 相互独立,且都服从 t(1) 分布,则

A. $\mathbb{P}(X+Y\geqslant 0)=\frac{1}{4}$ B. $\mathbb{P}(X - Y \ge 0) = \frac{1}{4}$

C. $\mathbb{P}(\max\{X,Y\} \ge 0) = \frac{1}{4}$ D. $\mathbb{P}(\min\{X,Y\} \ge 0) = \frac{1}{4}$

10. 设 X_1, X_2, \dots, X_n $(n \ge 2)$ 是来自总体 $N(0, \sigma^2)$ 的简单随机样本,令 $\alpha = \sum_{i=1}^n X_i, \beta = 1$

 $\sum_{i} X_{i}^{2}$,则下列说法中错误的是

A.
$$\frac{\alpha^2}{n\sigma^2}$$
 服从 χ^2 分布

C. $\frac{\alpha^2}{\beta}$ 服从 F 分布

B.
$$\frac{\beta}{\sigma^2}$$
 服从 χ^2 分布

D.
$$\frac{(X_1 - X_2)^2}{(X_1 + X_2)^2}$$
 服从 F 分布

- 二、填空题:11-16题,每题5分,共30分。
- 11. 设函数 f(x) 满足 f(0) = 0, f'(0) = 1, 则 $\lim_{x \to 0} \frac{f(1 \cos x)}{1 + f(\cos 2x)} =$ ______

12.
$$\int_{1}^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx = \underline{\hspace{1cm}}.$$

- 13. 设某产品的平均收益为 $\bar{R}(Q) = 1 + \ln Q$,其中 Q 是销售量,则边际收益为
- 14. 微分方程 y''' 3y' + 2y = 0 的通解为 $y = ____.$
- 15. 设 A 是 3 阶矩阵, α_1 , α_2 , α_3 是三个线性无关的三维列向量, 如果

$$A\alpha_1 = \alpha_1$$
, $A\alpha_2 = 2\alpha_1 + a\alpha_2$, $A\alpha_3 = \alpha_1 + (a-2)\alpha_2 + 2\alpha_3$,

且 A 可相似对角化,则 a 的取值范围是 .

- 16. 设随机变量 X 和 Y 相互独立, X 服从参数为 1 的指数分布, Y 的分布为 $\mathbb{P}(Y=1)=\frac{1}{4}, \mathbb{P}(Y=2)=\frac{3}{4}, \mathbb{M}$ $\mathbb{P}(1 \leq \min\{X,Y\} < 2)=$ _____.
- 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (本题满分 10 分)设函数 f(x) 在 x = 0 处二阶可导,且 f(0) = f'(0) = 0, f''(0) = 1. 设 曲线 y = f(x) 在点 (x, f(x)) 处的切线在 x 轴上的截距为 u(x), 计算极限 $\lim_{x\to 0} \frac{f(u(x))}{f(x)}$.
- 18. (本题满分 10 分) 设平面区域 D_1 由曲线 y = |x|, 直线 x = -1, x = a, y = 0 所围成, 平面区域 D_2 由曲线 y = |x|, 直线 x = a, x = 1, y = 0 所围成, 其中 0 < a < 1.
 - (1) 求 D_1 绕 x 轴旋转所得旋转体的体积 V_1 , D_2 绕直线 x=a 旋转所得旋转体的体积 V_2 .
 - (2) 求 $V_1 + V_2$ 的最小值.
- 19. (本题满分 10 分)设区域平面区域 D 为

$$\begin{cases} 2 \leqslant \frac{x}{x^2 + y^2} \leqslant 4 \\ 2 \leqslant \frac{y}{x^2 + y^2} \leqslant 4 \end{cases},$$

计算二重积分
$$\iint_D \frac{\mathrm{d}x\,\mathrm{d}y}{(x+y)^2}$$
.

- 20. (本题满分 10 分) 设数列 $\{a_n\}$ 满足 $a_0 = 1, a_1 = 2, a_{n+1} = \frac{n+2}{n+1}a_n \frac{1}{n+1}a_{n-1}, S(x)$ 为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数.
 - (1) 证明幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 1.
 - (2) 证明 (1-x)S'(x) = (2-x)S(x), 并求幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-1,1) 内的和函数.

21. (本题满分 15 分)已知 1 是三阶实对称矩阵 A 的一个特征值,且

$$A \begin{pmatrix} 1 & 2 \\ 2 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & -4 \\ 0 & 2 \end{pmatrix}.$$

- (1) 求 A 的所有特征值和对应的特征向量.
- (2) 如果 $\beta = (-1, 1, -5)$,求 $A^n \beta$.
- (3) 设向量 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$,求方程 $\mathbf{x}^{\mathrm{T}} A \mathbf{x} = 0$ 的通解.
- 22. (本题满分15分)设总体 X 的概率密度为

$$f(x) = \frac{\lambda^2}{2} |x| e^{-\lambda |x|}, -\infty < x < +\infty$$

其中未知参数 $\lambda > 0$, (X_1, X_2, \dots, X_n) 为来自总体 X 的简单随机样本.

- (1) 求参数 λ 的矩估计量 $\hat{\lambda}_1$.
- (2) 求参数 λ 的最大似然估计量 $\hat{\lambda}_2$.
- (3) 计算 $\mathbb{E}\left(\frac{1}{\hat{\lambda}_1^2}\right)$.